A model for the hysteresis observed in gating of lysenin channels.
نویسندگان
چکیده
The pore-forming toxin lysenin self-inserts to form conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels exhibit voltage regulation and hysteresis of the macroscopic current during the application of positive periodic voltage stimuli. We explored the bi-stable behavior of lysenin channels and present a theoretical approach for the mechanism of the hysteresis to explain its static and dynamic components. This investigation develops a model to incorporate the role of charge accumulation on the bilayer lipid membrane in influencing the channel conduction state. Our model is supported by experimental results and also provides insight into the temperature dependence of lysenin channel hysteresis. Through this work we gain perspective into the mechanism of how the response of a channel protein is determined by previous stimuli.
منابع مشابه
Bi-stability, hysteresis, and memory of voltage-gated lysenin channels.
Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels
BACKGROUND The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical chemistry
دوره 184 شماره
صفحات -
تاریخ انتشار 2013